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Increasing public engagement in volunteer science1, either through data 

collection2 or processing3, is both raising public awareness of science and 

gathering useful information for scientists.  While the payoffs of citizen science4 

are potentially large, achieving them requires new approaches to data management 

and analysis that can only result from strong cross-disciplinary collaborations.  

This is especially true in ecology and conservation biology, where historically the 

understanding of species’ responses to environmental change has been constrained 

by the limited spatial5 or temporal scale6 of available data.  Here we describe 

collaborative research in ecology, computer science, and statistics to generate 

essential information for conservation management of North American birds: 

accurate dynamic bird distributions models based on habitat associations across 

much of North America.  Unique is our ability to describe the broad-scale 
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dynamics of seasonal bird distributions and the associated seasonal patterns of 

habitat use.  Our source of bird distribution data is eBird7, an online bird checklist 

program that currently gathers more than 74,000 checklists  monthly from a large 

network of contributors.  Our results were made possible through a data intensive 

scientific workflow8 that includes analytical methods merged from the fields of 

machine learning and statistics.  We believe that this novel approach of data 

collection, synthesis, analysis, and visualization will serve as a hallmark for future 

research initiatives, with broad applicability across many scientific domains. 

Anticipating and mitigating large scale threats to biodiversity requires a 

thorough understanding of species' habitat requirements.  However, obtaining this 

knowledge of ecological systems is challenging because species’ distributions vary 

through time and with different environmental associations across species' ranges9.  

Identifying systematic patterns in the face of this variability is one of the most 

difficult tasks in ecology for two reasons: (1) ecologically-relevant data are either 

not collected across sufficiently large spatial or temporal scales10, or data are 

heterogeneous and widely scattered11; and (2) conventional expert-driven 

analytical methods are not effective for facilitating pattern discovery with such 

sparse, noisy data and highly variable ecological signals 8. 

Meeting the first challenge has required development of a data set that 

contains continent-wide yet fine-resolution data on birds and environmental 

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

09
.3

96
7.

1 
: P

os
te

d 
10

 N
ov

 2
00

9



features, and an efficient workflow for updating these data.  Avian data come from 

eBird12, a citizen science project that gathers more observations of organisms than 

any other existing monitoring program (more than 10,000,000 species-date-

locations observations annually).  While other large-scale North American bird-

monitoring programs, such as the Breeding Bird Survey13 and the Christmas Bird 

Count14 gather valuable data, they provide snapshots of species distributions during 

single seasons.  eBird provides continuous, year-round  data, from a continent-

wide network of volunteers.  We combined each of the more than 320,000 eBird 

locations where observations were made with over 500 environmental variables, 

which is freely available15.  Environmental predictor variables came from multiple 

sources and included remote sensing (e.g., land cover), geographic, climatic, and 

surveys gathering human demographic information. 

Overcoming the challenge of data analysis requires a new “data driven” 

approach wherein new information emerges from the data instead of a more 

traditional “hypothesis-driven” approach that examines expected patterns in the 

data 8.  Nonparametric machine-learning techniques (e.g., decision tree ensembles, 

neural networks, support vector machines, and maximum entropy models) can 

detect and describe complex patterns, and are increasingly being utilized by 

ecologists for species distribution modeling 16 17 18 19.  Although these techniques 

work well for analysis of static species distributions, we have found (unpublished 
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data) that these techniques can produce highly erroneous predicted distributions 

when there are differences in the amounts of data available from different areas or 

time periods.  Our solution has been to use the statistical approach of constraining 

the flexibility (i.e. parameterizing) the machine-learning methods.  We have done 

this by creating an ensemble of spatiotemporal sub-models 20.  This allows for 

continent-wide analysis that retains local patterns even when we do not have 

extensive prior knowledge of local variation in habitat associations. 

Our fundamental requirement for the data and analyses is that they be able to 

accurately describe distributions and habitat associations throughout the year, 

especially for widespread and migratory species.  Past attempts to design 

conservation landscapes across large regions or entire species’ ranges have been 

based on models of distributions in a single season, usually the breeding season. 

Such models may not fully reflect the limiting factors that drive population 

declines, as migratory songbirds face at least 15 times greater risk of mortality 

during migration than during the more sedentary breeding or winter seasons 21.  

Thus, empirical knowledge about species’ migration pathways, timing, and 

concentration areas are important new knowledge for science-based management 

strategies.  In addition, our ability to conserve landscapes with enough resiliencies 

to accommodate changing bird distributions, for example due to climate change, 

will require an accurate understanding of species’ habitat associations at all times 
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of the year and all parts of species' ranges.  Here we demonstrate how we can (1) 

accurately describe seasonal changes in species distributions, (2) identify regional 

differences in organism’s migratory movements, and (3) discover seasonal 

differences in habitat associations. 

Our combination of data and analysis techniques can produce very accurate 

models of species distributions.  Figure 1a displays the distribution of breeding 

occurrence and habitat preferences of the Indigo Bunting (Passerina cyanea) and 

Chimney Swift (Chaetura pelagica), two species with similar breeding ranges.  

Informal comparisons of these predictions to prior knowledge closely match and 

provide evidence for the accuracy of these maps.  In addition, quantitative 

measures of breeding season predictive performance verify this impression, with 

predictive accuracies of 83% and 88%, and AUC scores of 0.88 and 0.84 for indigo 

bunting and chimney swift respectively. (See the Methods section for more 

information about model validation).  We emphasize that the distribution maps are 

habitat based, and not simple interpolations.  This is illustrated in Figure 1a 

through the contrasting occurrence rates in urban centers, and in Figure 1b through 

the contrasting partial effects of human housing density.  

We can also describe the timing and movement patterns of migrant species.  

Figure 2 illustrates our ability to describe migration by comparing the spring and 

fall migrations for indigo bunting and Western Wood-Pewee (Contopus sordidus), 
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two neotropical migrants with very different migration paths (For more examples 

see supplementary figures 1 and 2).  Arrival dates are quantified as the first date 

when the predicted species’ occurrence probability exceeds a threshold level 

within a specified season. This model-based approach has two fundamental 

advantages over analyses that rely solely on raw observations: 1) the model 

provides a framework to control known sources of bias (e.g. due to variation in 

detection rates), and 2) the model utilizes all available data, avoiding known 

limitations of observed “first arrival dates”, which are a more variable metric of 

migration timing 22.  Our data and analyses describe indigo buntings (Fig 2a) 

crossing the Gulf of Mexico making landfall in early April, rapidly filling their 

southeastern breeding range by mid-April, and after some delay arriving in 

northern portions of their breeding range by mid-May (see supplementary movie to 

visualize annual pattern of indigo bunting occurrence). Western wood-pewee 

arrival was also modeled (Fig 2b) to be in early April with rapid filling of their 

southwestern breeding range, which was followed by a later April push along the 

more temperate Pacific coast finally arriving in mid-May in the cooler northern 

Rocky Mountains.  The fall departure of indigo bunting is shown (Fig 2c) to begin 

in mid-September, with a complete withdrawal from northern latitudes by mid-

October. Note the Mississippi River Valley harbored late indigo buntings into early 

November.  In contrast, models for western wood-pewees (Fig 2d) indicated that 
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they did not linger in their breeding areas, departing northern latitudes in late 

September and more southern latitudes by mid-October.  Analyses such as 

estimated arrival and departure dates will facilitate our understanding of how 

organisms respond to broad-scale environmental variation such as changing biotic 

environments, and variation in weather and climate. 

Few quantitative descriptions exist of season variation in habitat use for 

most bird species.  Figure 3 demonstrates our ability to detect and describe 

population-level seasonal changes in habitat associations.  The partial effect23 of 

the percent of deciduous forest within a 225ha neighborhood has a strong positive 

effect on indigo bunting occurrence rates during the breeding season and a slightly 

weaker positive effect during fall migration. In contrast, areas with a greater 

proportion of pasture appear to be preferred during the fall.  Indigo buntings often 

nest in edges of hardwoods and insects comprise much of their diet, while they 

winter in more open agricultural areas where their diet shifts primarily to seeds 24.  

Our models suggests that the indigo bunting begins a shift to winter habitat 

associations soon after breeding, and prefers more open habitat during fall 

migration. 

Occurrence and habitat modeling are increasingly important tools for 

conservation planning and land management, and provide fundamental information 

for the conservation design of large landscapes 25.  By adopting a “data intensive” 

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

09
.3

96
7.

1 
: P

os
te

d 
10

 N
ov

 2
00

9



approach 8 26 we have been able to harness the power of a broad-scale network of 

citizen scientists to address the need for accurate, year-round predictive models of 

bird distributions across varied spatial extents.  These models provide a framework 

for range-wide and full life-cycle conservation strategies, necessary to reverse 

population declines and implement habitat-management objectives for threatened 

species 27
 
28
 
29.  As we continue to collect large volumes of eBird data we can 

extend these analyses to study year-to-year patterns of movement of many North 

American species and assess effects of environmental contamination. All of this 

will enable land-managers and conservation biologists to better coordinate national 

and international conservation efforts. 

  

Methods Summary:  

We used eBird presence-absence data collected under the traveling count 

protocol7 from January 1, 2004 – December 31, 2008 from across the conterminous 

United States.  Throughout this paper we presented results for the indigo bunting, 

at times in comparison with other species.  The selected species have broad 

distribution across much of the conterminous United States, and have fairly well-

understood migrations30.  Thus, the quality of model predictions could be 

compared with expert opinion in addition to the quantitative measures of predictive 

performance.  

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

09
.3

96
7.

1 
: P

os
te

d 
10

 N
ov

 2
00

9



Relatively little is currently known about the broad-scale migration patterns 

for many common North American birds. Therefore, we chose to model these 

migrations using an automatic, semiparametric modeling approach to facilitate the 

rapid exploration of migrations across a broad set of species with highly variable 

migration strategies. The method we used was designed specifically to discover 

seasonally- and regionally-varying patterns in the data.  Spatiotemporal variation in 

distribution and habitat association is captured by combining a series of separate 

submodels that each described bird occurrence within a smaller spatial region and 

across a roughly one-month period.  Decision tree submodels were used to relate 

the 43 explanatory predictors to observed responses, facilitating “model-based” 

explorations to detect complex patterns of occurrence and uncover underlying 

dynamic associations between environmental features and bird distributions. 

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

09
.3

96
7.

1 
: P

os
te

d 
10

 N
ov

 2
00

9



 

1.  A public service. Nature 457, 8‐8 (2009). 
2.  Bhattacharjee, Y. ORNITHOLOGY: Citizen Scientists Supplement Work of Cornell Researchers. 

Science 308, 1402‐1403 (2005). 
3.  Lintott, C.J. et al. Galaxy Zoo: morphologies derived from visual inspection of galaxies from the 

Sloan Digital Sky Survey. Monthly Notices of the Royal Astronomical Society 389, 1179‐1189 
(2008). 

4.  Bonney, R.E. et al. Citizen Science: A New Paradigm for Increasing Science Knowledge and 
Scientific Literacy. BioScience (2009 (In Press)). 

5.  Wiens, J.A. Spatial Scaling In Ecology. Functional Ecology 3, 385‐397 (1989). 
6.  Gaston, K.J. & McArdle, B.H. The Temporal Variability of Animal Abundances: Measures, 

Methods and Patterns. Philosophical Transactions: Biological Sciences 345, 335‐358 (1994). 
7.  Sullivan, B.L. et al. eBird: A citizen‐based bird observation network in the biological sciences. 

Biological Conservation 142, 2282‐2292 (2009). 
8.  Kelling, S. et al. Data‐intensive Science: A New Paradigm for Biodiversity Studies. BioScience 59, 

613‐620 (2009). 
9.  Levin, S.A. The Problem of Pattern and Scale in Ecology: The Robert H. MacArthur Award 

Lecture. Ecology 73, 1943‐1967 (1992). 
10.  Kareiva, P., Mullen, A. & Southwood, R. Population Dynamics in Spatially Complex 

Environments: Theory and Data [and Discussion]. Philosophical Transactions: Biological Sciences, 
Population, Regulation, and Dynamics 330, 175‐190 (1990). 

11.  Jones, M.B., Schildhauer, M.P., Reichman, O.J. & Bowers, S. The New Bioinformatics: Integrating 
Ecological Data from the Gene to the Biosphere. Annual Review of Ecology, Evolution, and 
Systematics 37, 519‐544 (2006). 

12.  eBird. (http://www.ebird.org). 
13.  Sauer, J.R., Fallon, J.E. & Johnson, R. Use of North American Breeding Bird Survey Data to 

Estimate Population Change for Bird Conservation Regions. The Journal of Wildlife Management 
67, 372‐389 (2003). 

14.  Butcher, G.S., Fuller, M.R., McAllister, L.S. & Geissler, P.H. An Evaluation of the Christmas Bird 
Count for Monitoring Population Trends of Selected Species. Wildlife Society Bulletin 18, 129‐
134 (1990). 

15.  Munson, M.A. et al. The eBird Reference Dataset 
(http://www.avianknowledge.net/content/features/archive/eBird_Ref).  (2009). 

16.  Elith, J. et al. Novel methods improve prediction of species distributions from occurrence data. 
Ecography 29, 129‐151 (2006). 

17.  Fabricius, K.E. & De'ath, G. Environmental factors associated with the spatial distribution of 
crustose coralline algae on the Great Barrier Reef. Coral Reefs 19, 303‐309 (2001). 

18.  Hochachka, W.M. et al. Data‐Mining Discovery of Pattern and Process in Ecological Systems. 
Journal of Wildlife Management 71, 2427‐2437 (2007). 

19.  Phillips, S., Miroslav, D. & Schapire, R. in Proceedings of the twenty‐first international 
conference on Machine learning (ACM, Banff, Alberta, Canada; 2004). 

20.  Fink, D. et al. Spatiotemporal Exploratory models for Large‐scale Survey Data. Ecological 
Applications (2009 (submitted)). 

21.  Sillett, T.S. & Holmes, R.T. Variation in Survivorship of a Migratory Songbird throughout Its 
Annual Cycle. Journal of Animal Ecology 71, 296‐308 (2002). 

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

09
.3

96
7.

1 
: P

os
te

d 
10

 N
ov

 2
00

9



22.  Tøttrup, A.P., Thorup, K. & Rahbek., C. Patterns of change in timing of spring migration in North 
European songbird populations. Journal of Avian Biology 37, 84‐92 (2006). 

23.  Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. The Annals of 
Statistics 29, 1189‐1232 (2001). 

24.  Payne, R.B. in The Birds of North America Online. (ed. A. Poole) (Cornell Lab of Ornithology, 
Ithaca; 2006). 

25.  Kremen, C. et al. Aligning Conservation Priorities Across Taxa in Madagascar with High‐
Resolution Planning Tools. Science 320, 222‐226 (2008). 

26.  Hey, T., Tansley, S. & Tolle, K. (eds.) The Fourth Paradigm: Data‐Intensive Scientific Discovery. 
(Microsoft, 2009). 

27.  North American Bird Conservation Initiative: The need for 21st century bird conservation design. 
All Bird Bulletin, Special Issue (http://www.nabci‐us.org/bulletin0706‐CD.pdf) (2006). 

28.  Rich, T.D. et al. Partners in Flight North American Landbird Conservation Plan 
(http://www.partnersinflight.org/cont_plan/).  (2004). 

29.  Will, T.C. et al. The five elements process: designing optimal landscapes to meet bird 
conservation objectives. Partners in Flight Technical Series No. 1.  Partners in Flight website:  
(http://www.partnersinflight.org/pubs/ts/01‐FiveElements.pdf) (2005). 

30.  Poole, A. (ed.) The Birds of North America Online (http://bna.birds.cornell.edu). (2009). 
 

 
Supplementary Information is linked to the online version of the paper at 

www.nature.com/nature. 

Acknowledgements  This study is based on work supported by The Leon Levy 

Foundation, The Wolf Creek Foundation, and The National Science Foundation 

(Grants ITR-0427914, DBI-0542868, DUE-0734857, IIS-074826, and IIS-

0832782).  In addition the authors would like to thank Benjamin Zuckerberg and 

Rich Caruana for comments on the manuscript.  

Author Information Reprints and permissions information is available at 

www.nature.com/reprints.  The authors declare no competing financial interests.  

Correspondence and request for materials should be address to SK 

(stk2@cornell.edu).

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

09
.3

96
7.

1 
: P

os
te

d 
10

 N
ov

 2
00

9



 

 
Figure 1. Predicted probability of occurrence and partial dependence on housing 
density for indigo bunting (top) and chimney swift (bottom) for 30 June 2008. 
Although both species have similar, widespread distributions across eastern U.S., 
the fine-scale differences around major urban centers is striking.  The indigo 
bunting, which requires natural forest and shrub habitats, has relatively low 
occurrence rates in urban centers while the chimney swift, which nests in chimneys 
in urban and suburban areas, has relatively high occurrence rates. We note three 
major urban centers (Pittsburg, St.Louis, and Atlanta) and provide the partial effect 
estimates of housing density to highlight these differences.  
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Figure 2.  Comparison of timing and directional movements for two migratory 
bird species based on predicted arrival and departure dates. Colors indicate earliest 
day in 2008 when species occurrence exceeds 5% (left), or last day in 2008 when 
occurrence exceeds 5% (right) based on a sequence of predicted occurrence 
surfaces at 3 day intervals across 2008. Modeling the annual fine-scale contours of 
migratory arrival and departure dates facilitate tracking of species’ response to 
long-term environmental change and will enhance our ability to identify important 
migration corridors or stopover sites. 
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Figure 3.  Differences in habitat associations for indigo bunting in breeding season 
and fall migration. All partial dependence effects were estimated using partial 
dependence functions 23 and were estimated separately for the Breeding season 
(June 5 – July 31) and during the Fall migration (September 1 – October 15). Grey 
represents approximate 95% confidence regions. The partial effect of deciduous 
forest is strongly positive during the breeding season and a slightly weaker during 
the fall. There is no significant partial effect of pasture in spring, but a strong 
positive pasture effect appears during the fall migration.   
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